Students
Teachers
Graduates
Faculties
Deaths due to asphyxia as well as following acute poisoning with severe respiratory depression have been attributed to buprenorphine in opioid abusers. However, in human and animal studies, buprenorphine exhibited ceiling respiratory effects, whereas its metabolite, norbuprenorphine, was assessed as being a potent respiratory depressor in rodents. Recently, norbuprenorphine, in contrast to buprenorphine, was shown in vitro to be a substrate of human P-glycoprotein, a drug-transporter involved in all steps of pharmacokinetics including transport at the blood–brain barrier. Our objectives were to assess P-glycoprotein involvement in norbuprenorphine transport in vivo and study its role in the modulation of buprenorphine-related respiratory effects in mice.
Respiratory effects were studied using plethysmography and the P-glycoprotein role at the blood–brain barrier using in situ brain perfusion.
P-glycoprotein plays a key-protective role in buprenorphine-related respiratory effects, by allowing norbuprenorphine efflux at the blood–brain barrier. Our findings suggest a major role for drug–drug interactions that lead to P-glycoprotein inhibition in buprenorphine-associated fatalities and respiratory depression.
critical care medicine.
2012.
Students
Teachers
Graduates
Faculties